Frequently Asked Questions about Agentic Artificial Intelligence

Frequently Asked Questions about Agentic Artificial Intelligence

What is agentic AI and how does this differ from the traditional AI used in cybersecurity? Agentic AI is a term used to describe autonomous, goal-oriented, systems that are able to perceive their environment, take decisions, and act to achieve specific goals. Unlike traditional AI, which is often rule-based or reactive, agentic AI systems can learn, adapt, and operate with a degree of independence. In cybersecurity, agentic AI enables continuous monitoring, real-time threat detection, and proactive response capabilities.

What are some real-world examples of agentic AI being used in cybersecurity today? Examples of agentic AI in cybersecurity include:

Platforms that automatically detect and respond to malicious threats and continuously monitor endpoints and networks.
AI-powered vulnerability scans that prioritize and identify security flaws within applications and infrastructure
Intelligent threat intelligence systems gather data from multiple sources and analyze it to provide proactive protection against emerging threats
Autonomous incident response tools that can contain and mitigate cyber attacks without human intervention
AI-driven fraud detection solutions that identify and prevent fraudulent activities in real-time
How can agentic AI help bridge the skills gap in cybersecurity and alleviate the burden on security teams?  ai security implementation  helps to address the cybersecurity skills gaps by automating repetitive and time-consuming security tasks currently handled manually. Agentic AI systems free human experts from repetitive and time-consuming tasks like continuous monitoring, vulnerability scanning and incident response. Agentic AI's insights and recommendations can also help less experienced security personnel to make better decisions and respond more efficiently to potential threats. What are the implications of agentic AI on compliance and regulatory requirements for cybersecurity? Agentic AI can help organizations meet compliance and regulatory requirements more effectively by providing continuous monitoring, real-time threat detection, and automated remediation capabilities. Autonomous agents ensure that security controls and vulnerabilities are addressed promptly, security incidents are documented, and reports are made. However, the use of agentic AI also raises new compliance considerations, such as ensuring the transparency, accountability, and fairness of AI decision-making processes, and protecting the privacy and security of data used for AI training and analysis. How can organizations integrate agentic AI into their existing security tools and processes? For organizations to successfully integrate agentic artificial intelligence into existing security tools, they should:

Assess their current security infrastructure and identify areas where agentic AI can provide the most value
Create a roadmap and strategy for the adoption of agentic AI, in line with security objectives and goals.
Make sure that AI agent systems are compatible and can exchange data and insights seamlessly with existing security tools.
Provide training and support for security personnel to effectively use and collaborate with agentic AI systems
Create governance frameworks to oversee the ethical and responsible use of AI agents in cybersecurity
Some emerging trends and future directions for agentic AI in cybersecurity include:

Collaboration and coordination among autonomous agents from different security domains, platforms and platforms
AI models with context-awareness and advanced capabilities that adapt to dynamic and complex security environments
Integrating agentic AI into other emerging technologies such as cloud computing, blockchain, and IoT Security
To protect AI systems, we will explore novel AI security approaches, including homomorphic cryptography and federated-learning.
AI explained techniques are being developed to increase transparency and confidence in autonomous security decisions
How can agentic AI help organizations defend against advanced persistent threats (APTs) and targeted attacks? Agentic AI provides a powerful defense for APTs and targeting attacks by constantly monitoring networks and systems to detect subtle signs of malicious behavior. Autonomous agents can analyze vast amounts of security data in real-time, identifying patterns and anomalies that might indicate a stealthy and persistent threat. Agentic AI, which adapts to new attack methods and learns from previous attacks, can help organizations detect APTs and respond more quickly, minimising the impact of a breach.

What are the advantages of using agentic AI to detect real-time threats and monitor security? The following are some of the benefits that come with using agentic AI to monitor security continuously and detect threats in real time:

24/7 monitoring of networks, applications, and endpoints for potential security incidents
Prioritization and rapid identification of threats according to their impact and severity
Reduced false positives and alert fatigue for security teams
Improved visibility of complex and distributed IT environments
Ability to detect new and evolving threats which could evade conventional security controls
Security incidents can be dealt with faster and less damage is caused.
How can agentic AI enhance incident response and remediation? Agentic AI has the potential to enhance incident response processes and remediation by:

Automated detection and triaging of security incidents according to their severity and potential impact
Providing contextual insights and recommendations for effective incident containment and mitigation
Orchestrating and automating incident response workflows across multiple security tools and platforms
Generating detailed incident reports and documentation for compliance and forensic purposes
Continuously learning from incident data to improve future detection and response capabilities
Enabling faster and more consistent incident remediation, reducing the overall impact of security breaches
To ensure that security teams can effectively leverage agentic AI systems, organizations should:

Provide comprehensive training on the capabilities, limitations, and proper use of agentic AI tools
Foster a culture of collaboration and continuous learning, encouraging security personnel to work alongside AI systems and provide feedback for improvement
Develop clear protocols and guidelines for human-AI interaction, including when to trust AI recommendations and when to escalate issues for human review
Invest in upskilling programs that help security professionals develop the necessary technical and analytical skills to interpret and act upon AI-generated insights
To ensure an holistic approach to the adoption and use of agentic AI, encourage cross-functional collaboration among security, data science and IT teams.


the benefits of agentic AI with the need for human oversight and decision-making in cybersecurity? To achieve the best balance between using agentic AI in cybersecurity and maintaining human oversight, organizations should:

Assign roles and responsibilities to humans and AI decision makers, and ensure that all critical security decisions undergo human review and approval.
Use AI techniques that are transparent and easy to explain so that security personnel can understand and believe the reasoning behind AI recommendations
Test and validate AI-generated insights to ensure their accuracy, reliability and safety
Maintain human-in the-loop methods for high-risk security scenarios such as incident response or threat hunting
Encourage a culture that is responsible in the use of AI, highlighting the importance of human judgement and accountability when it comes to cybersecurity decisions.
Regularly monitor and audit AI systems to identify potential biases, errors, or unintended consequences, and make necessary adjustments to ensure optimal performance and alignment with organizational security goals